Relevance of Existing Taxonomies to Current
Software Watermarking Research

Mikhail Gouline
Department of Computer Science
University of Auckland
mgou027 @aucklanduni.ac.nz

Abstract

Software watermarking has become a popular security research topic in
the recent years. However, despite the growing number of researchers fo-
cusing on the applications of watermarking technology, there are significant
variations in the terminology and models being used. The resulting vague-
ness in understanding what software watermarking is, can be fixed by defin-
ing a theoretical classification for such practices. Although they are rarely
found in literature, this paper summarizes and interconnects the existing tax-
onomies and relates them to the current research topics, in order to evaluate
the relevance of these taxonomies to practical applications.

1 Introduction

A software watermark, according to [3], is defined as small amount of information
embedded in the bytecode of a piece of software for the purposes of identification.
However, there is much confusion among the published literature as to what other
properties are required from a watermark. Some of this confusion is due to unclear
definitions, for example, the terminology used for different purpose watermarks.
In other words, a question whether a generic term “watermark” should be used for
any types of embedded identification information, or should there be distinct terms
for different agendas behind watermarking. Other confusion arises from arguments
between published papers about the properties that a watermark must and must not
possess. For instance, papers such as [2] constantly refer to watermarks as having
to be robust, however other applications, such as currency watermarking, call for
watermarks to be fragile for validation purposes. Similarly, an argument over the
visibility of watermarks exists.

We use a combined software watermarking taxonomy described in [3] and [5],



since the two are related and in fact share two authors, to identify these points of
confusion and address them. This paper will start by summarizing the said tax-
onomy and defining terminology used throughout the rest of the paper in sections
2 and 3 and then testing it on examples of literature on watermarking to identify
whether that theory covers the practical instances in the research community.

The selection process for the test papers is based around giving a broad overview
of literature in terms of age and topics covered. Hence, the article [2] was selected
as being the oldest one, published in 1998 and providing the widest look not only
on the field of watermarking, but also on classical steganography. At the other end,
articles [4] and [1] offer specific new techniques and approaches to the field mark-
ing, in their own respective ways, the departure from the standards adapted in the
years when the taxonomy was developed. Such mixture of papers brings diversity
to the analysis and hence makes the conclusions drawn from it more credible.

2 Background

This section defines the taxonomy that will be used in the paper, by presenting the
classification of watermarks and discussing the confusion points described in [5],
making clarifications on them.

2.1 Types of watermarks

In order to have separate terminology for different purpose watermarks, [5] defines
four types discussed in the following subsections. This terminology will be applied
in the analysis of the test papers.

2.1.1 Authorship mark

One of the more popular types of a watermark discussed in literature [3] [4] serves
the purpose of identifying who the author of the software is. In other words, being
able to run the software through a recognizer and hence prove that the author of the
software is who is claiming to be that.

2.1.2 Fingerprinting mark

Although different purposes can be classified as being in this category, fingerprint-
ing essentially refers to embedding copy-specific information that identifies the
person who purchased the software, such as a serial number among others. This
can be used to trace a copy of the software involved in a violation back to the
licensee.



2.1.3 Validation mark

In addition to the interests expressed by the authors and the distributors, water-
marks are also used to satisfy the customers’ interests. Validation is needed to
verify the integrity of the software received by the end-user. In other words, to
assure the customer that the copy of the software that they have purchased had
not been modified by a third party in any way and that their privacy has not been
compromised.

2.14 Licensing mark

Finally, a watermark can carry licensing information attached to the software. This
refers to the information controlling the way the software can be used by the li-
censee, which can prove what terms of use the author had attached to the software
before the customer purchased a copy.

2.2 Properties of watermarks

In addition to classifying the watermarks by their purpose, confusion arises over
the properties possessed by the watermarks. These are discussed in the following
subsections.

2.2.1 Visibility

As [5] explains in references, certain papers argue that watermarks should be visi-
ble, meaning that anyone, including a potential attacker, can see the watermark but
only the owner can modify or remove it. The motivation behind this is making the
technology open in order for the parties to be able to ensure of its effectiveness.
Others, on the other hand, are leaning towards having invisible watermarks. This
point of view suggest that not being able to even detect the watermark decreases
the attacker’s chances of being able to damage it.

2.2.2 Robustness

Unlike visibility, robustness of a watermark is not a point of opinion but rather a
property dictated by the purpose behind the watermark. If the goal of the system
is preserving the embedded information in the software regardless of the modifi-
cations, then a robust watermark is desired that will not be susceptible to attacks.
However, if the purpose is to verify the integrity of a distributed copy, the water-
mark should be fragile, so that if any modifications have been made, it becomes
invalid indicating that the software is not in its original state.



2.2.3 Efficiency

Watermarking systems introduce an efficiency trade-off in two categories. First,
between watermarks being easy to recognize and hard to damage — because the
more sophisticated the technique is, the more computationally expensive it be-
comes to extract the information therefore making it even more difficult for the at-
tackers. And second, between watermarking not interfering with the performance
of the software and, again, embedded information being harder to modify. More
sophisticated techniques increase computational costs to the software when used,
which decreases the utility of such software to the end-user.

However, looking at efficiency from a different perspective, the second trade-off
may not be valid for invisible watermarks, since the very fact that the performance
of the software is noticeably affected by the embedding, can give away its existence
to the attacker, which is most undesirable for such systems.

3 Attacks

Potentially, the purpose of watermarking is identifying unauthorized practices and
therefore setting limitations to what users are allowed to do, which means that
attempts will be made to bypass that by performing attacks on the watermark. Pos-
sible attack models are formalized in [3] and [5] as presented in the following
subsections, grouped by the robustness property due to the differences in models
caused by this distinction.

3.1 Robust watermarks

The goal in attacking a robust watermark is rendering it unverifiable. The taxon-
omy identifies four types of such attacks, three of which can be applied to both,
watermarking and fingerprinting systems while the fourth one — collusive attack
model — is exclusive to the fingerprinting, as it it relies on the embedded informa-
tion being different from one copy to another.

3.1.1 Rewrite attack

The hardest but most effective approach for removing a watermark is completely
rewriting the program and simply leaving the watermark out. In this case, any
attempts to verify the origin of the software based on the embedded watermark
will yield no results, since the attacker did not add the watermark while rewriting
the program and hence it does not exist in that copy anymore. Although it is the
most effective attack model, it is also the most difficult to practically implement



since it involves a complete rewrite of the code, which may not be feasible or even
possible in certain settings.

3.1.2 Additive attack

Apart from completely removing the watermark, an attacker may choose to modify
the software in order to confuse the possible attempts to identify the origin of the
software. Such an attack involves the adversary embedding their own watermark in
the program code to falsely claim ownership. In this case, not only can the attacker
counter-claim for plagiarism if the situation ends up in court, since their watermark
is now provably present in the software, but the original mark could have been
damaged to the point where it became unverifiable as a result of inserting a new
one and the interference that caused.

3.1.3 Distortive attack

Instead of attempting to completely remove the watermark, which can be too dif-
ficult, as mentioned before, the attacker can try to modify it to a state where the
author’s verification system will not be able to recognize it. Distortive attacks can
be performed using semantic-preserving transformations to the program code, such
as code obfuscation. Modifications like these are designed to damage the water-
mark but retain the full functionality of the original software by changing names,
ordering and formatting of the bytecode leaving the overall structure intact, expect-
ing that the watermarking technique used relies on those factors.

3.1.4 Collusive attack

Finally, another type of attack can be used on fingerprinted software, where the
attacker obtains multiple copies of the software, then by comparing them, discov-
ers where the fingerprint is located and removes it. By definition, fingerprinted
software has a property that every copy is essentially different, since the embed-
ded fingerprint is different. This property can be used by the attacker to identify
the parts that do not match, concluding that they contain the embedding. To pre-
vent collusive attacks, the author can apply different types of modifications to each
distributed copy of the software to render the matching technique useless.

3.2 Fragile watermarks

Unlike a robust watermark, fragile watermarks should become invalid if any mod-
ification has been made to the software, so the goal of the attacker is to keep the



watermark valid while performing these modifications. The three possible scenar-
ios of how that can be achieved, as defined in the taxonomy, are presented below.

3.2.1 Bypassing watermarks

One possibility is to leave the watermark intact while modifying the software. In
other words, identify the actions likely to break the watermark and only apply
transformations that perform them, so that the recognizer cannot detect the forgery.

3.2.2 Reinserting watermarks

If the watermark has been damaged as a result of performing some modifications,
and the attacker has a way of acquiring the author’s private key and the digest
algorithm, they can create a new watermark and embed it back into the program.
That way, it would appear to the recognizer that the software has not been changed,
since the watermark is as valid as the original one, because they were generated in
the same way.

3.2.3 Crafting recognizer

Finally, if the watermark has been damaged and it is obvious to the attacker that the
recognizer will be able to identify the violation, they can create a crafted recognizer
that verifies the damaged watermark as being genuine. In this case, it is largely
dependent on the ability to pass the crafted recognizer for the real one in the setting
involved.

4 Evaluation

In this section, the taxonomy defined above is tested on various watermarking pa-
pers. In particular, the aim is to establish whether the taxonomy covers each case
and how well it does that, based on how straightforward and definite the process of

applying it is.

4.1 On The Limits of Steganography

Although the article [2] focuses on the broader area of steganography, which does
include software watermarking but does not set it as the main emphasis point, it
can be viewed as the early attempt to set up a standardized framework for under-
standing steganography. The reason behind testing the taxonomy on this paper is
identifying whether it lines up with the similar work done prior to its creation that
has a wider scope inclusive of our topic.



4.1.1 Overview

The authors essentially concentrate on the Prisoners’ Problem, where two prisoners
pass messages to each other, by means of the warden forwarding them, and the goal
is to get the secret message across to the addressee without the warden noticing that
the secret message — the stego object — is even there. This is defined as the passive
warden model in the article, since the warden makes no attempts to modify the
message and instead only tries to identify the existence of that secret message.
However, in the software watermarking area active “wardens” are more common,
such as pirates, who modify the message in hope of damaging or removing the
hidden message. This model is then related to the way watermarks of general and
unique types are passed as hidden messages in the software copies.

4.1.2 Analysis

Throughout the article, the authors make it clear that watermarks are defined to
be invisible. The Prisoners’ Problem described above suggests that regardless of
the type of wardens present — passive or active — they do not know that the secret
messages are being passed and how they are being passed, in fact this is the very
point of steganography, according to the authors — keeping the process of passing
secret messages a secret from others not involved in the conversation. From that
argument, it is clear that the article talks about robust watermarks, where the goal
is to withstand an active warden and preserve the information embedded in the
software.

Interestingly, the paper makes the same distinction between “watermarks” and “fin-
gerprints”, defined in the taxonomy as authorship and fingerprinting marks respec-
tively, where the former refers to a general mark placed in all copies of the soft-
ware in order to identify the author and the latter refers to a copy-specific mark that
uniquely identifies each copy.

A notion presented in the article that does not completely line up with the taxon-
omy is the situation where the attacker knows where and how the watermark is
embedded and uses that knowledge to remove it. Since the motivation is still ren-
dering the mark unverifiable, it could be categorized as the distortive attack model.
However, the distortive attack model suggests it is unknown where the mark is and
the attacker uses generic techniques for damaging it, that have been shown to work
on similar systems, but are not guaranteed to work on the current one. Alterna-
tively, it is similar to the collusive model, where comparing multiple fingerprinted
copies gives away the location of the watermark, which is then used to remove it.
The difference is that the article illustrates a situation where it does not have to be
neither a fingerprinted piece of software, nor does the location of the mark have to



be discovered by comparing multiple copies — in fact, it can be any watermarked
software, and the inside information could have even been obtained from any non-
technological sources, such as direct human-to-human interaction (for example,
phishing). So in this respect, the taxonomy does not fully cover the point raised in
the article.

Efficiency, although mostly being left out of the analysis, does appear in multi-
ple sections of the article, confirming the notion defined in the taxonomy that the
embedded information should not impede the performance of the original product,
which in this case is software.

4.1.3 Overall fitness

Although most of the points raised by the authors of the article are covered by the
taxonomy, certain blanks can be identified on both sides. First of all, the article
does not discuss other dimensions of points defined in the taxonomy, such as visi-
bility. On the other hand, the taxonomy does not cover the situation where inside
information on the location of the watermark is used to remove it, as it falls be-
tween the distortive and collusive attack models, not fully satisfying requirements
for either of them.

4.2 Dynamic K-gram based Software Birthmark

The article [4] introduces a novel approach to watermarking bytecode by consid-
ering the dynamic states that the program goes through on a given input. The
technique proposed for that is k-gram slicing of the program op-code.

4.2.1 Overview

Building on an earlier development in [6] presenting a technique to use k-grams
of static program code for watermarking, the article offers a way to consider the
states of the program when run on a given input in addition to the static code. Ac-
cording to experimental evidence presented, this increases the effectiveness of the
watermark and lessens the chances of an attacker damaging it by using obfusca-
tion techniques. To achieve that, the article provides a way to slice the op-code
generated from the program byte code into k-grams and as a result generate the
watermark, relative to the program and the input fed into it.

4.2.2 Analysis

The authors clearly state the intention they had for their watermarking technique
— being able to sustain obfuscation attacks without damaging the watermark. This



description is classified as being a robust watermark in the taxonomy. Furthermore,
obfuscation attacks are regarded as the distortive attack model in the class of robust
watermarks. Other attack models are purposefully left out of the paper to focus on
the most prevalent one for the given class of watermarks.

The purpose of the information embedded in the watermark is not clearly stated,
although since no information is being embedded inside the code, and the code
is being analyzed to create the watermark instead, the suggested purpose, preva-
lent throughout the examples used in the experimentation, is to confirm authorship.
Hence, under the taxonomy, this qualifies as an authorship mark technique.
Finally, the visibility is not discussed explicitly but since, again, no information
is being added to the code and the watermark generation process is detailed in
the article, the technique qualifies for the visible mark. Unlike visibility, however,
efficiency is the point that is not obvious from reading the paper since no compu-
tational complexity analysis has been included and considering the nature of the
technique being focused on the verification process, this can be important in prac-
tical applications of the technology.

4.2.3 Overall fitness

Overall, the taxonomy covers all the points discussed in the article either explicitly
or by conclusions drawn from the absence of alternatives, such as the attack model.
However, the authors fail to discuss some important points, such as efficiency, that
are relevant to the nature of the presented technology. Furthermore, they do not use
any formal definitions when defining the purpose and type of the watermark that
they developed, leaving the classification and standardization of terminology to the
reader. It is also noteworthy that no conflicts of definitions and classifications have
been identified between those given in the taxonomy and those mentioned in the
article.

4.3 Protecting Mobile Agent’s Computation Results with Reversible
Watermarking and Digital Signature

The article [1] targets the security issues involved in the Mobile Agent (MA) tech-
nology. Namely, protecting the results of the agent’s computation upon its return
to the home system. This is done with a reversible watermark and digital signature.

4.3.1 Overview

The authors proposed a novel way of ensuring that the MA has not been intercepted
and modified while collecting data and computing results on the network, such



that the verification can be performed upon its return to the home platform. The
proposed method involves first watermarking the collected results, then computing
the hash of the watermarked data and finally signing it with private key of the
remote host. In the end, we obtain a digital signature, in this case generated by
RSA. Upon its arrival at the home system, the hashes are re-computed and verified
against the transferred values and digital signatures are checked for authenticity
using RSA.

4.3.2 Analysis

Applying the taxonomy to the example illustrated in the article, it is clear that this
is a fragile validation mark. The purpose of it is to become invalid in case the MA
has been modified before its return to the home platform, hence the usage of the
hash to identify inconsistencies. The authors do not mention the visibility status
that their system requires but the fact that the process description along with the
algorithm have been published freely in a scientific article rather than in a pro-
prietary closed-source medium, suggests that the watermark can be classified as
visible, unless the information about which of the open techniques is used on a
particular MA system is kept secret. But this is not stated.

Although the article does not discuss possible attack situations, all three attack
models on this class of watermarks, defined in the taxonomy, apply to this example
namely, bypassing the protection, reinserting the watermark and crafting a recog-
nizer. In particular, the first two are very much relevant while the third one is less
likely, since the verification process takes place on the trusted home platform and
placing a third-party recognizer there would be difficult, but nevertheless possible,
especially if a remote distributed verification system is used.

4.3.3 Opverall fitness

The article demonstrated a complete compatibility with the defined taxonomy,
since all discussed points were covered. The initial classification of the type of
watermarking referred to and one of the properties matched the descriptions of-
fered in the taxonomy. In addition, it introduced points, such as attack models,
that the authors did not explicitly state their stance on, which leaves room for more
research to be done in the area of MA security.

5 Conclusion

The testing performed on the watermarking articles showed that the defined taxon-
omy covered the points discussed by the authors to a satisfactory level, i.e. with no

10



serious conflicts. What is prevalent throughout the analysis is that, as mentioned
in the beginning of this paper, authors are not consistent with the terminology they
use, generalizing or even misinterpreting the definitions, disregarding the proper-
ties that their approaches may or may not have and the reasons behind that. Finally,
one of the articles completely ignored the much needed analysis of possible attack
models that the adversaries can use to compromise their systems.

Some blanks in the taxonomy were identified as well, by the earlier paper focusing
on the broader field of steganography, where an attack model could not be accu-
rately classified, instead falling in between the two defined models not entirely
satisfying either of them.

A conclusion to be drawn from the analysis is that taxonomies help formalize each
new approach and line it up with the previous work done on the subject. The
authors not following this model end up publishing material that has to be first
carefully classified by the reader before relating to the background developments
and hence evaluating the utility of the new offering.

References

[1] X. Niu A. Khan and Z. Yong. Protecting mobile agent’s computation results
with reversible watermarking and digital signature. Third International Con-
ference on International Information Hiding and Multimedia Signal Process-
ing, 2007.

[2] R. Anderson and F. Petitcolas. On the limits of steganography. IEEE Journal
of Selected Areas in Communications, 1998.

[3] C. Collberg and J. Nagra. Surreptitious Software. Obfuscation, Watermarking,
Tamperproofing for Software Protection. Addison-Wesley, 2009.

[4] Y. Bai et al. Dynamic k-gram based software birthmark. [19th Australian
Conference on Software Engineering, 2008.

[5] C. Thomborson J. Nagra and C. Collberg. A functional taxonomy for soft-
ware watermarking. Twenty-Fifth Australasian Computer Science Conference,
2002.

[6] G. Myles and C. Collberg. K-gram based software birthmarks. ACM Sympo-
sium on Applied Computing, 2005.

11



